极限集邮网

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
楼主: ngsunyu
打印 上一主题 下一主题

科学家百人箓 (one hundred most influential scientists of all times)

[复制链接]
46#
 楼主| 发表于 2019-12-23 12:56 | 只看该作者
本帖最后由 ngsunyu 于 2019-12-26 00:31 编辑

安德烈-馬里·安培 (法語:André-Marie Ampère,FRS,1775年1月20日-1836年6月10日) 是法国物理学家、数学家,经典电磁学的创始人之一。为了纪念他的贡献,国际单位制中电流的单位“安培”以他的姓氏命名。

1820年九月,丹麦物理学家奥斯特发现电流的磁效应。于是,安培开始着手建立描述电磁关系的物理理论与数学方程。为了进行定量研究,安培设计了一个检流计,可通过指针的偏转检测电流的方向并测量电流的大小。1822年,安培发表了一篇论文,对实验现象进行定量总结,发现两根平行载流导线以各自产生的磁场对另一根导线产生作用力。1826年,安培提出载流导线中的电流与其产生的磁场之间的关系,即安培定律。此后,安培的代表作《关于电动力学现象之数学理论的回忆录,独一无二的经历》出版,“电动力学”一词自此产生。(zh.wikipedia.org/安德烈-馬里·安培)

French physicist André-Marie Ampère founded and named the science of electrodynamics, now known as electromagnetism. His name endures in everyday life in the ampere, the unit for measuring electric current.

Early Life
Ampère, who was born into a prosperous bourgeois fam- ily during the height of the French Enlightenment, personified the scientific culture of his day. His father, Jean-Jacques Ampère, was a successful merchant, and also an admirer of the philosophy of Jean-Jacques Rousseau, whose theories of education, as outlined in his treatise émile, were the basis of Ampère’s education. Rousseau argued that young boys should avoid formal schooling and pursue instead
an “education direct from nature.” Ampère’s father actualized this ideal by allowing his son to educate himself within the walls of his well-stocked library. French Enlightenment masterpieces such as Georges-Louis Leclerc, comte de Buffon’s Histoire naturelle, générale et particulière (begun in 1749) and Denis Diderot and Jean Le Rond d’Alembert’s Encyclopédie (volumes added between 1751 and 1772) thus became Ampère’s schoolmasters. In addition, he used his access to the latest mathematical books to begin teaching himself advanced mathematics at age 12. His mother was a devout woman, so Ampère was also initiated into the Catholic faith along with Enlightenment science.
The French Revolution (1787–99) that erupted during his youth was also formative. Ampère’s father was called into public service by the new revolutionary government, becoming a justice of the peace in a small town near Lyon. Yet when the Jacobin faction seized control of the Revolutionary government in 1792, Jean-Jacques Ampère resisted the new political tides, and he was guillotined on Nov. 24, 1793, as part of the Jacobin purges of the period.

While the French Revolution brought these personal traumas, it also created new institutions of science that ultimately became central to André-Marie Ampère’s professional success. Ampère’s maturation corresponded with the transition to the Napoleonic regime in France, and he found new opportunities for success within the technocratic structures favoured by the new French emperor.

In 1802 Ampère produced Considérations sur la théorie mathématique de jeu (“Considerations on the Mathematical Theory of Games”), a treatise on mathematical probabil- ity that he sent to the Paris Academy of Sciences in 1803. In the following years Ampère engaged in a diverse array of scientific inquiries—writing papers and engaging in topics ranging from mathematics and philosophy to chem- istry and astronomy. Such breadth was customary among the leading scientific intellectuals of the day.

Founding of Electromagnetism
In 1820 Ampère’s friend and eventual eulogist François Arago demonstrated before the members of the French Academy of Sciences the surprising discovery of Danish physicist Hans Christiaan Ørsted that a magnetic needle is deflected by an adjacent electric current. Ampère was well prepared to throw himself fully into this new line of research.

Ampère immediately set to work developing a mathematical and physical theory to understand the relationship between electricity and magnetism. Extending Ørsted’s experimental work, Ampère showed that two parallel wires carrying electric currents repel or attract each other, depending on whether the currents flow in the same or opposite directions, respectively. He also applied mathe- matics in generalizing physical laws from these experimental results. Most important was the principle that came to be called Ampère’s law, which states that the mutual action of two lengths of current-carrying wire is proportional to their lengths and to the intensities of their currents. Ampère also applied this same principle to magnetism, showing the harmony between his law and French physicist Charles Augustin de Coulomb’s law of magnetic action. Ampère’s devotion to, and skill with, experimental techniques anchored his science within the emerging fields of experimental physics.

Ampère also offered a physical understanding of the electromagnetic relationship, theorizing the existence of an “electrodynamic molecule” (the forerunner of the idea of the electron) that served as the constituent element of electricity and magnetism. Using this physical understanding of electromagnetic motion, Ampère developed a physical account of electromagnetic phenomena that was both empirically demonstrable and mathematically pre- dictive. In 1827 Ampère published his magnum opus, Mémoire sur la théorie mathématique des phénomènes électrodynamiques  uniquement déduite de l’experience (Memoir on the Mathematical Theory of Electrodynamic Phenomena, Uniquely Deduced from Experience), the work that coined the name of his new science, electrodynamics, and became known ever after as its founding treatise. In recognition of his contri- bution to the making of modern electrical science, an international convention signed in 1881 established the ampere as a standard unit of electrical measurement, along with the coulomb, volt, ohm, and watt, which are named, respectively, after Ampère’s contemporaries Coulomb, Alessandro Volta of Italy, Georg Ohm of Germany, and James Watt of Scotland.

The 1827 publication of Ampère’s synoptic Mémoire brought to a close his feverish work over the previous seven years on the new science of electrodynamics. The text also marked the end of his original scientific work. His health began to fail, and he died while performing a university inspection, decades before his new science was canonized as the foundation stone for the modern science of electromagnetism.

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。

今天的考题: 这两枚同样的邮票和明信片,但其中之一枚是赝品,谁能看出端倪?

提示:看看日历或背诵一月大,二月小等。

28296B25-0FD7-4616-B3F4-F5F565A9DCAA.jpeg (124.25 KB, 下载次数: 52)

28296B25-0FD7-4616-B3F4-F5F565A9DCAA.jpeg

08C14055-77B4-4488-872B-988A4FC28F4C.jpeg (117.76 KB, 下载次数: 60)

08C14055-77B4-4488-872B-988A4FC28F4C.jpeg
回复 支持 反对

使用道具 举报

47#
 楼主| 发表于 2020-2-4 07:06 | 只看该作者
阿梅代奥·阿伏伽德罗(Amedeo Avogadro,1776年-1856年),意大利化学家,生于都灵。全名Lorenzo Romano Amedeo Carlo Avogadro di Quaregua。1811年发表了阿伏伽德罗假說,也就是今日的阿伏伽德罗定律,并提出分子概念及原子、分子区别等重要化学问题。 著名的阿伏伽德罗常數(NA=6.02214129±0.00000027×1023,一般计算时常取6.02×1023或6.022×1023为近似值)以他的姓氏命名。(zh.wikipedia.org/阿梅代奥·阿伏伽德罗)

Italian mathematical physicist Amedeo Avogadro showed in what became known as Avogadro’s law that, under controlled conditions of temperature and pressure, equal volumes of gases contain an equal number of molecules.

Education and Early Career
The son of Filippo Avogadro, conte di Quaregna e Cerreto, a distinguished lawyer and senator in the Piedmont region of northern Italy, Avogadro graduated in jurisprudence in 1792 but did not practice law until after receiving his doc- torate in ecclesiastical law four years later. In 1801 he became secretary to the prefecture of Eridano.
Beginning in 1800 Avogadro privately pursued studies in mathematics and physics, and he focused his early research on electricity. In 1804 he became a corresponding member of the Academy of Sciences of Turin, and in 1806 he was appointed to the position of demonstrator at the academy’s college. Three years later he became professor of natural philosophy at the Royal College of Vercelli, a post he held until 1820 when he accepted the first chair of mathematical physics at the University of Turin. Due to civil disturbances in the Piedmont, the university was closed and Avogadro lost his chair in July 1822. The chair was reestablished in 1832 and offered to the French mathematical physicist Augustin-Louis Cauchy. A year later  Cauchy left for Prague, and on Nov 28,1834, Avogadro was reappointed.

Molecular Hypothesis of Combining Gases
Avogadro is chiefly remembered for his molecular hypothesis, first stated in 1811, in which he claimed that equal volumes of all gases at the same temperature and pressure contain the same number of molecules. He used this hypothesis further to explain the French chemist Joseph- Louis Gay-Lussac’s law of combining volumes of gases (1808) by assuming that the fundamental units of elemen- tary gases may actually divide during chemical reactions. It also allowed for the calculation of the molecular weights of gases relative to some chosen standard. Avogadro and his contemporaries typically used the density of hydrogen gas as the standard for comparison. Thus, the following relationship was shown to exist:
Weight of 1 volume of gas or vapour / Weight of 1 volume of hydrogen =
Weight of 1 molecule of gas or vapour / Weight of 1 molecule of hydrogen

To distinguish between atoms and molecules of different kinds, Avogadro adopted terms including molécule intégrante (the molecule of a compound), molécule constituante (the molecule of an element), and molécule élémentaire (atom). Although his gaseous elementary molecules were predominantly diatomic, he also recognized the existence of monatomic, triatomic, and tetratomic elementary molecules.
In 1811 he provided the correct molecular formula for water, nitric and nitrous oxides, ammonia, carbon monoxide, and hydrogen chloride. Three years later he described the formulas for carbon dioxide, carbon disulfide, sulfur dioxide, and hydrogen sulfide. He also applied his hypothesis to metals and assigned atomic weights to 17 metallic elements based upon analyses of particular compounds that they formed. However, his references to gaz métalliques may have actually delayed chemists’ acceptance of his ideas. In 1821 he offered the correct formula for alcohol (C2H6O) and for ether (C4H10O).
Priority over who actually introduced the molecular hypothesis of gases was disputed throughout much of the 19th century. Avogadro’s claim rested primarily upon his repeated statements and applications. Others attributed this hypothesis to the French natural philosopher André- Marie Ampère, who published a similar idea in 1814. Many factors account for the fact that Avogadro’s hypothesis was generally ignored until after his death. First, the distinction between atoms and molecules was not generally understood. Furthermore, as similar atoms were thought to repel one another, the existence of polyatomic elementary molecules seemed unlikely.
Avogadro also mathematically represented his findings in ways more familiar to physicists than to chemists. Consider, for example, his proposed relationship between the specific heat of a compound gas and its chemical constituents: c2 = p c 2 + p c 2 + etc.

(Here c, c1, c2, etc., represent the specific heats at constant volume of the compound gas and its constituents; p1, p2, etc., represent the numbers of molecules of each component in the reaction). Based upon experimental evidence, Avogadro determined that the specific heat of a gas at constant volume was proportional to the square root of its attractive power for heat. In 1824 he calculated the “true affinity for heat” of a gas by dividing the square of its specific heat by its density. The results ranged from 0.8595 for oxygen to 10.2672 for hydrogen, and the numerical order of the affinities coincided with the electrochemical series, which listed the elements in the order of their chemical reactivities. Mathematically dividing an element’s affinity for heat by that of his selected standard, oxygen, resulted in what he termed the element’s “affinity number.” Between 1843 and his retirement in 1850, Avogadro wrote four memoirs on atomic volumes and designated affinity numbers for the elements using atomic volumes according to a method “independent of all chemical considerations”—
a claim that held little appeal for chemists.

Legacy
Avogadro’s minimal contact with prominent scientists and his habit of citing his own results increased his isolation. Although he argued in 1845 that his molecular hypothesis for determining atomic weights was widely accepted, considerable confusion still existed over the concept of atomic weights at that time. Avogadro’s hypothesis began to gain broad appeal among chemists only after his compatriot and fellow scientist Stanislao Cannizzaro demonstrated its value in 1858, two years after Avogadro’s death. Many of Avogadro’s pioneering ideas and methods anticipated later developments in physical chemistry. His hypothesis is now regarded as a law, and the value known as Avogadro’s number (6.02214179 × 1023), the number of molecules in a gram molecule, or mole, of any substance, has become a fundamental constant of physical science.

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。

4F53F208-F95B-4F03-861E-C3F8E8D41203.jpeg (196.37 KB, 下载次数: 46)

4F53F208-F95B-4F03-861E-C3F8E8D41203.jpeg
回复 支持 反对

使用道具 举报

48#
 楼主| 发表于 2020-2-5 02:49 | 只看该作者
约瑟夫·路易·盖-吕萨克(法語:Joseph Louis Gay-Lussac,1778年12月6日-1850年5月10日),法国化学家和物理学家,以研究氣體而聞名。1802年盖-吕萨克发现了气体在恒压、升温时的线性膨胀的定律(查理-盖-吕萨克定律)。在法國巴黎大学附近有一条街道是以他命名的,在他的出生地有一个广场以他命名。盖-吕萨克葬于著名的巴黎拉雪茲神父公墓(Cimetière du Père-Lachaise)。(zh.wikipedia.org/约瑟夫·路易·盖-吕萨克)

French chemist and physicist Joseph-Louis Gay-Lussac pioneered investigations into the behaviour of gases, established new techniques for analysis, and made notable advances in applied chemistry.

Searching for Laws of Nature
In 1801 Gay-Lussac became involved in experiments on capillarity in order to study short-range forces. Gay-Lussac’s first publication (1802), however, was on the thermal expan- sion of gases. To ensure more accurate experimental results, he used dry gases and pure mercury. He concluded from his experiments that all gases expand equally over the temper- ature range 0–100 °C (32–212 °F). This law, usually (and mistakenly) attributed to French physicist J.-A.-C. Charles as “Charles’s law,” was the first of several regularities in the behaviour of matter that Gay-Lussac established.
Of the laws Gay-Lussac discovered, he remains best known for his law of the combining volumes of gases (1808). He had previously (1805) established that hydrogen and oxygen combine by volume in the ratio 2:1 to form water. Later experiments with boron trifluoride and ammonia produced spectacularly dense fumes and led him to investigate similar reactions, such as that between hydrogen chloride and ammonia, which combine in equal volumes to form ammonium chloride. Further study enabled him to generalize about the behaviour of all gases. Gay-Lussac’s approach to the study of matter was consistently volumetric rather than gravimetric, in contrast to that of his English contemporary John Dalton.
Another example of Gay-Lussac’s fondness for volumetric ratios appeared in an 1810 investigation into the composition of vegetable substances performed with his friend Louis-Jacques Thenard. Together they identified a class of substances (later called carbohydrates) including sugar and starch that contained hydrogen and oxygen in the ratio of 2:1. They announced their results in the form of three laws, according to the proportion of hydrogen and oxygen contained in the substances.

Other Researches
As a young man, Gay-Lussac participated in dangerous exploits for scientific purposes. In 1804 he ascended in a hydrogen balloon with Jean-Baptiste Biot in order to investigate the Earth’s magnetic field at high altitudes and to study the composition of the atmosphere. They reached an altitude of 4,000 metres (about 13,000 feet). In a following solo flight, Gay-Lussac reached 7,016 metres (more than 23,000 feet), thereby setting a record for the highest balloon flight that remained unbroken for a half-century. In 1805–06, amid the Napoleonic wars, Gay-Lussac embarked upon a European tour with the Prussian explorer Alexander von Humboldt.
In 1807 Gay-Lussac published an important study of the heating and cooling produced by the compression and expansion of gases. This was later to have significance for
the law of conservation of energy.

Rivalry with Davy
When Gay-Lussac and his colleague Louis-Jacques Thenard heard of the English chemist Humphry Davy’s isolation of the newly discovered reactive metals sodium and potassium by electrolysis in 1807, they worked to produce even larger quantities of the metals by chemical means and tested their reactivity in various experiments. Notably they isolated the new element boron. They also studied the effect of light on reactions between hydrogen and chlorine, though it was Davy who demonstrated that the latter gas was an element.
Rivalry between Gay-Lussac and Davy reached a climax over the iodine experiments Davy carried out during an extraordinary visit to Paris in November 1813, at a time when France was at war with Britain. Both chemists claimed pri- ority over discovering iodine’s elemental nature. Although Davy is typically given credit for this discovery, most of his work was hurried and incomplete. Gay-Lussac presented a much more complete study of iodine in a long memoir presented to the National Institute on Aug. 1, 1814, and subsequently published in the Annales de chimie. In 1815 Gay- Lussac experimentally demonstrated that prussic acid was simply hydrocyanic acid, a compound of carbon, hydrogen, and nitrogen, and he also isolated the compound cyanogen [(CN)2 or C2N2]. His analyses of prussic acid and hydriodic acid (HI) necessitated a modification of Antoine-Laurent Lavoisier’s theory that oxygen was present in all acids.

Applied Science
Beginning in 1816, Gay-Lussac served in a wide array of appointments, attesting to the value his contemporaries placed upon applying chemistry toward solving social and economic concerns. Among his more lucrative positions was his 1829 appointment as director of the assay department at the Paris Mint, for which he developed a precise and accurate method for the assaying of silver.
Gay-Lussac was a key figure in the development of the new science of volumetric analysis. Previously a few crude trials had been carried out to estimate the strength of chlorine solutions in bleaching, but Gay-Lussac introduced a scientific rigour to chemical quantification and devised important modifications to apparatuses. In a paper on commercial soda (sodium carbonate, 1820), he identified the weight of a sample required to neutralize a given amount of sulfuric acid, using litmus as an indicator. He went on to estimate the strength of bleaching powder (1824), using a solution of indigo to signify when the reaction was complete. In his publications are found the first use of the chemical terms burette, pipette, and titrate. The principles of volumetric analysis could be established only through Gay- Lussac’s theoretical and practical genius but, once established, the analysis itself could be carried out by a junior assistant with brief training. Gay-Lussac published an entire series of Instructions on subjects ranging from the estimation of potash (1818) to the construction of lightning conductors. Among the most influential Instructions was his estimation of silver in solution (1832), which he titrated with a solution of sodium chloride of known strength. This method was later employed at the Royal Mint.

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。

4DE92931-C9AA-4791-BD12-B49A583AC01C.jpeg (206.66 KB, 下载次数: 43)

4DE92931-C9AA-4791-BD12-B49A583AC01C.jpeg
回复 支持 反对

使用道具 举报

49#
 楼主| 发表于 2020-2-6 01:37 | 只看该作者
本帖最后由 ngsunyu 于 2020-2-6 01:38 编辑

汉弗里·戴维爵士,第一代從男爵(英語:Sir Humphry Davy, 1st Baronet,1778年12月17日-1829年5月29日),英国化学家。是发现化学元素最多的人,被譽為「無機化學之父」。

1799年,戴维发现了一氧化二氮(又名笑气)具有麻醉作用,能使病人丧失痛觉。1802年開創了農業化學。1807年用電解法離析出金屬鉀和鈉;1808年分離出金屬鈣、鍶、鋇和鎂。1813年他在法国研究碘,指出碘是與氯類似的元素,並製備出碘化鉀和碘酸鉀等許多碘的化合物。後還證實金剛石和木炭的化學成分相同。1815年發明安全礦燈。1817年發現鉑能促使醇蒸氣在空氣中氧化的催化作用。(zh.wikipedia.org/汉弗里·戴维)

English chemist Sir Humphry Davy discovered several chemical elements (including sodium and potassium) and compounds, invented the miner’s safety lamp, and became one of the greatest exponents of the scientific method.

Early Career
Early in his career Davy formed strongly independent views on topics of the moment, such as the nature of heat, light, and electricity and the chemical and physical doctrines of Antoine-Laurent Lavoisier. In his small private laboratory, he prepared and inhaled nitrous oxide (laughing gas), in order to test a claim that it was the “principle of contagion,” that is, caused diseases. Davy subsequently investigated the composition of the oxides and acids of nitrogen, as well as ammonia, and persuaded his scientific and literary friends to report the effects of inhaling nitrous oxide. He nearly lost his own life inhaling water gas, a mixture of hydrogen and carbon monoxide sometimes used as fuel. The account of his work, published as Researches, Chemical and Philosophical (1800), immediately established his reputation.
In 1801 Davy moved to London, where he delivered lectures and furthered his researches on voltaic cells, early forms of electric batteries. His carefully prepared and rehearsed lectures rapidly became important social functions and added greatly to the prestige of science. In 1802 he conducted special studies of tanning: he found catechu, the extract of a tropical plant, as effective as and cheaper than the usual oak extracts, and his published account was long used as a tanner’s guide.
In 1803 Davy was admitted a fellow of the Royal Society and an honorary member of the Dublin Society and delivered the first of an annual series of lectures before the board of agriculture. This led to his Elements of Agricultural Chemistry (1813), the only systematic work available for many years. For his researches on voltaic cells, tanning, and mineral analysis, he received the Copley Medal in 1805. He was elected secretary of the Royal Society in 1807.

Major Discoveries
Davy early concluded that the production of electricity in simple electrolytic cells resulted from chemical action and that chemical combination occurred between substances of opposite charge. He therefore reasoned that electrolysis, the interactions of electric currents with chemical compounds, offered the most likely means of decomposing all substances to their elements. These views were explained in 1806 in his lecture “On Some Chemical Agencies of Electricity,” for which, despite the fact that England and France were at war, he received the Napoleon Prize from the Institut de France (1807). This work led directly to the isolation of sodium and potassium from their compounds (1807) and of the alkaline-earth metals from theirs (1808). He also discovered boron (by heating borax with potassium), hydrogen telluride, and hydrogen phosphide (phosphine). He showed the correct relation of chlorine to hydrochloric acid and the untenability of the earlier name (oxymuriatic acid) for chlorine; this negated Lavoisier’s theory that all acids contained oxygen. He explained the bleaching action of chlorine (through its lib- eration of oxygen from water) and discovered two of its oxides (1811 and 1815), but his views on the nature of chlo- rine were disputed. He was not aware that chlorine is a chemical element, and experiments designed to reveal oxygen in chlorine failed.
Davy later published the first part of the Elements of Chemical Philosophy, which contained much of his own work; his plan was too ambitious, however, and nothing further appeared. Its completion, according to a Swedish chemist, J.J. Berzelius, would have “advanced the science of chemistry a full century.”
Davy conducted a number of other studies as well. He investigated the substance “X” (later called iodine), whose properties and similarity to chlorine he quickly discovered, and he analyzed many specimens of classical pigments and proved that diamond is a form of carbon. Davy also inves- tigated the conditions under which mixtures of firedamp and air explode. This led to the invention of the miner’s safety lamp and to subsequent researches on flame.
After being created a baronet in 1818, he again went to Italy, where he had been years earlier, inquiring into volcanic action and trying unsuccessfully to find a way of unrolling the papyri found at Herculaneum. During the 1820s, he examined magnetic phenomena caused by electricity and electrochemical methods for preventing saltwater corrosion of copper sheathing on ships by means of iron and zinc plates. Though the protective principles were made clear, considerable fouling occurred, and the method’s failure greatly vexed him. His Bakerian lecture for 1826, “On the Relation of Electrical and Chemical Changes,” contained his last known thoughts on electrochemistry and earned him the Royal Society’s Royal Medal.
In the last months of his life, Davy wrote a series of dialogues, which were published posthumously as Consolations in Travel, or the Last Days of a Philosopher (1830).

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。

A01F0E88-C230-4DF4-94B1-58F7EF2E1EB7.jpeg (107.93 KB, 下载次数: 45)

A01F0E88-C230-4DF4-94B1-58F7EF2E1EB7.jpeg
回复 支持 反对

使用道具 举报

50#
 楼主| 发表于 2020-2-7 00:41 | 只看该作者
本帖最后由 ngsunyu 于 2020-2-7 02:08 编辑

永斯·雅各布·貝采利烏斯男爵(瑞典語:Jöns Jacob Berzelius,1779年8月20日-1848年8月7日),又譯贝采利乌斯、贝吉里斯、柏濟力阿斯、貝齊里烏斯、白則里,是一名瑞典化學家。他就讀烏普薩拉大學,獲得醫學學位後投身於研究工作,並先後在醫學外科學院(卡羅琳學院前身)擔任教師(無薪)和教授(有薪)。貝采利烏斯發現了鈰、硒、矽和釷這四種化學元素,成功測定幾乎所有已知化學元素的原子量,提出了同分異構物、聚合物、同素異形體和催化等重要化學術語,提出了近似現制的元素符號系統,還在化學教育、學術機構管理、礦物學、分析化學作出貢獻;然而,他生前所主張的電化二元論和活力論後來被確認是錯誤的。貝采利烏斯在1848年逝世,他被譽為現代化學發展的關鍵人物之一、以及「瑞典化學之父」。(zh.wikipedia.org/永斯·贝采利乌斯)

Jöns Jacob Berzelius was one of the founders of modern chemistry. He is especially noted for his determination of atomic weights, the development of modern chemical symbols, his electrochemical theory, the discovery and isolation of several elements, the development of classical analytical techniques, and his investigation of isomerism and catalysis, phenomena that owe their names to him. He was a strict empiricist and insisted that any new theory be consistent with the sum of chemical knowledge.

Electrochemical Dualism
Berzelius is best known for his system of electrochemical dualism. The electrical battery, invented in 1800 by Alessandro Volta and known as the voltaic pile, provided the first experimental source of current electricity. In 1803 Berzelius demonstrated, as did the English chemist Humphry Davy at a slightly later date, the power of the voltaic pile to decompose chemicals into pairs of electrically opposite constituents. For example, water decomposed into electropositive hydrogen and electronegative oxygen, whereas salts degraded into electronegative acids and electropositive bases. Based upon this evidence, Berzelius revised and generalized the acid/base chemistry chiefly promoted by Lavoisier. For Berzelius, all chemical compounds contained two electrically opposing constituents, the acidic, or electronegative, and the basic, or electropositive. Furthermore, according to Berzelius, all chemicals, whether natural or artificial, mineral or organic, could be distinguished and specified qualitatively by iden- tifying their electrically opposing constituents.

Stoichiometry
In addition to his qualitative specification of chemicals, Berzelius investigated their quantitative relationships as well. As early as 1806, he began to prepare an up-to-date Swedish chemistry textbook and read widely on the subject of chemical combination. Finding little information on the subject, he decided to undertake further investigations. His teaching interests focused his attention upon inorganic chemistry. Around 1808 he launched what became a vast and enduring program in the laboratory analysis of inorganic matter. To this end, he created most of his apparatuses, prepared his own reagents, and estab- lished the atomic weights of the elements, the formulas of their oxides, sulfides, and salts, and the formulas of virtu- ally all known inorganic compounds.
Berzelius’s experiments led to a more complete depiction of the principles of chemical combining proportions, an area of investigation that the German chemist Jeremias Benjamin Richter named “stoichiometry” in 1792. Berzelius was able to establish the quantitative specificity by which substances combined. He reported his analytical results in a series of famous publications, most promi- nently his Essai sur la théorie des proportions chimiques et sur l’influence chimique de l’électricité (1819; “Essay on the Theory of Chemical Proportions and on the Chemical Influence of Electricity”), and the atomic weight tables that appeared in the 1826 German translation of his Lärbok i kemien (Textbook of Chemistry).

Atomism and Nomenclature
The project of specifying substances had several important consequences. In order to establish and display the laws of stoichiometry, Berzelius invented and perfected more exacting standards and techniques of analysis. His generalization of the older acid/base chemistry led him to extend chemical nomenclature that Lavoisier had introduced to cover the bases (mostly metallic oxides), a change that allowed Berzelius to name any compound consistently with Lavoisier’s chemistry. For this purpose, Berzelius created a Latin template for translation into diverse vernacular languages.
The project of specifying substances also led Berzelius to develop a new system of notation that could portray the composition of any compound both qualitatively (by showing its electrochemically opposing ingredients) and quantitatively (by showing the proportions in which the ingredients were united). His system abbreviated the Latin names of the elements with one or two letters and applied superscripts to designate the number of atoms of each element present in both the acidic and basic ingredient. In his own work, however, Berzelius preferred to indicate the proportions of oxygen with dots placed over the letters of the oxidized elements, but most chemists rejected that practice. Instead, they followed Berzelius’s younger German colleagues, who replaced his superscripts with subscripts and thus created the system still used today. Berzelius’s new nomenclature and notation were promi- nently displayed in his 1819 Essai.

Mineralogy
Berzelius applied his analytical method to two primary areas, mineralogy and organic chemistry. Mineralogy had long stimulated Berzelius’s analytical interest. Berzelius himself discovered several new elements, including cerium (1803) and thorium (1828), in samples of naturally occurring minerals, and his students discovered lithium, vanadium, lanthanum, didymium (later resolved into pra- seodymium and neodymium), erbium (later resolved into erbium, ytterbium, scandium, holmium, and thulium), and terbium. Berzelius also discovered selenium (1818), though this element was isolated in the mud resulting from the manufacture of sulfuric acid rather than from a mineral sample.
In 1813 Berzelius received a mineral collection from a visiting British physician, William MacMichael, that prompted him to take up the analysis and classification of minerals. His major contribution, reported in 1814, was recognizing that silica, formerly seen as a base, frequently served as the electronegative or acidic constituent of minerals and that the traditional mineralogical class of “earths” could be reduced primarily to silicate salts. Distinguishing mineral species therefore demanded a knowledge of the stoichiometry of complex silicates, a conviction that led Berzelius in 1815 to develop his dualistic doctrine, which now anticipated a dualistic structure for substances formerly seen as “triple salts” and for other complex minerals.
Many remaining problems in the specification of minerals were resolved by the law of isomorphism, the recognition that chemically similar substances possess similar crystal forms, discovered in 1818 by the German chemist Eilhardt Mitscherlich. Berzelius had provided both the patronage and the foundational concepts for Mitscherlich’s own career. Ultimately, Berzelius trans- formed the field and established a flourishing tradition of chemical mineralogy.

Organic Chemistry
Organic chemistry also posed problems in the discrimination between substances. In 1814 Berzelius again turn his attention to organic analysis. At this point, he isolated stoichiometric compounds and worked to determine their elemental constituents. Berzelius argued that, despite dif- ferences between organic and inorganic matter, organic compounds could be assigned a dualistic composition and therefore could be specified in the same manner as inorganic ones. The application of his precept that organic chemistry could be understood in terms of the principles that govern inorganic chemistry reached its zenith in the 1830s, especially as it was embodied in the older theory of radicals. However, it was also at this time that younger chemists discovered phenomena such as chlorine substi- tution and began to recast inorganic chemistry in the light of organic substances.

A Man of Influence
Among Berzelius’s other accomplishments were his improvements of laboratory apparatuses and techniques used for chemical and mineral analysis, especially solvent extraction, elemental analysis, quantitative wet chemistry, and qualitative mineral analysis. Berzelius also characterized and named two new concepts: “isomerism,” in which chemically diverse substances possess the same composi- tion; and “catalysis,” in which certain chemical reactions are facilitated by the presence of substances that are them- selves unaffected. He also coined the term protein while attempting to apply a dualistic organic chemistry to the constituents of living things.

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。

1D78600F-918A-499A-880D-3509895DA5FC.jpeg (120.35 KB, 下载次数: 41)

1D78600F-918A-499A-880D-3509895DA5FC.jpeg

A4E0C834-F5F2-4F9F-B654-05A7E1B1F67C.jpeg (123.22 KB, 下载次数: 43)

A4E0C834-F5F2-4F9F-B654-05A7E1B1F67C.jpeg
回复 支持 反对

使用道具 举报

51#
 楼主| 发表于 2020-2-8 00:30 | 只看该作者
本帖最后由 ngsunyu 于 2020-2-8 00:32 编辑

约翰·詹姆斯·奥杜邦(John James Audubon,1785年4月26日-1851年1月27日),美国画家、博物学家,法裔美國人。奥杜邦一生留下了无数的画作,他的作品不仅是科学研究的重要资料,也是不可多得的艺术杰作,他先后出版了《美洲鸟类》和《美洲的四足动物》两本画谱。其中的《美洲鸟类》曾被誉为19世纪最伟大和最具影响力的著作。

奥杜邦的作品对后世野生动物绘画产生了深刻的影响,同时,在普通公众中,奥杜邦的作品也有着很大的影响力。除了绘画作品,奥杜邦在他的日记和随笔中流露出的保护自然、保护野生动物、尊重生命的理念,对整个社会产生了非常深远的影响,在英语世界,奥杜邦的名字就是环境保护和野生动物保护的象征。

在奥杜邦逝世之后,美国出现了很多以他名字命名的博物馆、动物园和科研机构,在北美,以奥杜邦名字命名的奥杜邦学会始终致力于野生动物保护和环境保护,是美国最具影响力的社会团体之一。(zh.wikipedia.org/约翰·詹姆斯·奥杜邦)

John James Audubon, whose original name was Fougère Rabin, or Jean Rabin, was an ornithologist, artist, and naturalist who became particularly well known for his drawings and paintings of North American birds. The ille- gitimate son of a French merchant, planter, and slave trader and a Creole woman of Saint-Domingue, Audubon and his illegitimate half-sister (who was also born in the West Indies) were legalized by adoption in 1794, five years after their father returned to France.

Young Audubon developed an interest in drawing birds during his boyhood in France. At age 18 he was sent to the United States in order to avoid conscription and to enter business. He began his study of North American birds at that time; this study would eventually lead him from Florida to Labrador, Can. With Frederick Rozier, Audubon attempted to operate a mine, then a general store. The lat- ter venture they attempted first in Louisville, Ky., later in Henderson, Ky., but the partnership was dissolved after they failed utterly. Audubon then attempted some busi- ness ventures in partnership with his brother-in-law; these, too, failed. By 1820 he had begun to take what jobs he could to provide a living and to concentrate on his steadily growing interest in drawing birds; he worked for a time as a taxidermist, later making portraits and teaching drawing, while his wife worked as a governess.

By 1824 he began to consider publication of his bird drawings, but he was advised to seek a publisher in Europe, where he would find better engravers and greater interest in his subject. In 1826 he went to Europe in search of patrons and a publisher. He was well received in Edinburgh and, after the king subscribed for his books, in London as well. The engraver Robert Havell of London undertook publication of his illustrations as The Birds of America, 4 vol. (435 hand-coloured plates, 1827–38). William MacGillivray helped write the accompanying text, Ornithological Biography, 5 vol. (octavo, 1831–39), and A Synopsis of the Birds of North America, 1 vol. (1839), which serves as an index. Until 1839 Audubon divided his time between Europe and the United States, gathering material, completing illustra- tions, and financing publication through subscription. His reputation established, Audubon then settled in New York City and prepared a smaller edition of his Birds of America, 7 vol. (octavo, 1840–44), and a new work, Viviparous Quadrupeds of North America, 3 vol. (150 plates, 1845–48), and the accompanying text (3 vol., 1846–53), completed with the aid of his sons and the naturalist John Bachman.

Critics of Audubon’s work have pointed to certain fan- ciful (or even impossible) poses and inaccurate details, but few argue with their excellence as art. To many, Audubon’s work far surpasses that of his contemporary (and more scientific) fellow ornithologist, Alexander Wilson.

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。

06097498-9D00-4240-8B8D-A2CE41527C5D.jpeg (80.17 KB, 下载次数: 45)

06097498-9D00-4240-8B8D-A2CE41527C5D.jpeg
回复 支持 反对

使用道具 举报

52#
 楼主| 发表于 2022-5-1 00:07 | 只看该作者
第二十五楼 之 罗伯特·波义耳(英語:Robert Boyle,1627年1月25日-1691年12月30日),又译波意耳,爱尔兰自然哲学家,炼金术师,在化学和物理学研究上都有杰出贡献。虽然他的化学研究仍然带有炼金术色彩,他的《怀疑派的化学家》一书仍然被视作化学史上的里程碑。

1657年他在罗伯特·胡克的辅助下对奥托·格里克发明的气泵进行改进。1659年制成了“波义耳机器”和“风力发动机”。接下来他用这一装置对气体性质进行了研究,并于1660年发表对这一设备的研究成果。这一论文遭到以弗朗西斯·莱恩为代表的科学家的反对,为了反驳异议,波义耳阐明了在温度一定的条件下气体的压力与体积成反比的这一性质。法国物理学家马略特得到了同样的结果,但是一直到1676年才发表。于是在英语国家,这一定律被称为波义耳定律,而在欧洲大陆则被称为马略特定律。

1661年波义耳发表了《怀疑派的化学家》,在这部著作中波义耳批判了一直存在的四元素说,认为在科学研究中不应该将组成物质的物质都称为元素,而应该采取类似海尔蒙特的观点,认为不能互相转变和不能还原成更简单的东西为元素,他说:“我说的元素...是指某种原始的、简单的、一点也没有掺杂的物体。元素不能用任何其他物体造成,也不能彼此相互造成。元素是直接合成所谓完全混合物的成份,也是完全混合物最终分解成的要素。”而元素的微粒的不同聚合体导致了性质的不同。由于波义耳在实验与理论两方面都对化学发展有重要贡献,他的工作为近代化学奠定了初步基础,故被认为是近代化学的奠基人。(zh.wikipedia.org/罗伯特·波义耳)

22 02 2022 伦敦世展戳。

68C24D1E-AD70-4D43-BFDF-2C4658D48F91.jpeg (133.49 KB, 下载次数: 24)

68C24D1E-AD70-4D43-BFDF-2C4658D48F91.jpeg
回复 支持 反对

使用道具 举报

53#
 楼主| 发表于 2022-5-8 00:21 | 只看该作者
笫三十九~四十楼 之  愛德華·詹納(英文:Edward Jenner,1749年5月17日-1823年1月26日),FRS,亦譯作愛德華·金納或琴納,是一名英國醫生,生於英國告羅士打郡伯克利牧區一個牧師家庭,以研究及推廣牛痘疫苗,防止天花而聞名,被稱為疫苗之父。并且为后人的研究打开了通道,促使巴斯德、科赫等人针对其他疾病寻求治疗和免疫的方法。(zh.wikipedia.org/愛德華·詹納)

22.02.2022伦敦世展戳。

50A27445-11A2-46F1-806F-9A349E2225A8.jpeg (124.98 KB, 下载次数: 25)

50A27445-11A2-46F1-806F-9A349E2225A8.jpeg
回复 支持 反对

使用道具 举报

54#
 楼主| 发表于 2022-5-15 00:12 | 只看该作者
本帖最后由 ngsunyu 于 2022-5-15 00:26 编辑

米高·法拉第(英語:Michael Faraday,1791年9月22日-1867年8月25日),英國物理学家,在電磁學及電化學領域做出許多重要貢獻,其中主要的貢獻為電磁感應、抗磁性、電解。

法拉第是一位優秀的實驗家。他詳細地研究在載流導線四周的磁場,想出了磁場線的點子,因此建立了電磁場的概念。法拉第觀察到磁場會影響光線的傳播,他找出了兩者之間的關係。他發現了電磁感應的原理、抗磁性、法拉第電解定律。他發明了一種電磁旋轉機器,這就是今天電動機的雛型。由於法拉第的努力,電磁現象開始出現於具有實際用途的科技發展。

法拉第在化學上也頗有建樹,他發現了苯,研究氯晶籠化合物,發明了本生燈的早期形式及氧化數,同時也推廣了陽極、陰極、電極及離子等術語。他最終當上了第一位也是最重要的大英皇家科學研究所的富勒化學教授。

為了紀念法拉第,在國際單位制裏,電容的單位是法拉。(zh.wikipedia.org/麥可·法拉第)

English physicist and chemist Michael Faraday is known for his many experiments that contributed greatly to the understanding of electromagnetism. Faraday, who became one of the greatest scientists of the 19th century, began his career as a chemist. He wrote a manual of practical chemistry that reveals his mastery of the technical aspects of his art, discovered a number of new organic compounds, among them benzene, and was the first to liquefy a “permanent” gas (i.e., one that was believed to be incapable of liquefaction). His major contribution, however, was in the field of electricity and magnetism. He was the first to produce an electric current from a magnetic field, invented the first electric motor and dynamo, demonstrated the relation between electricity and chemical bonding, discovered the effect of magnetism on light, and discovered and named diamagnetism, the peculiar behaviour of certain substances in strong magnetic fields. He provided the experimental, and a good deal of the theoretical, foundation upon which James Clerk Maxwell erected classical electromagnetic field theory.

Early Career

Faraday began his scientific career as Sir Humphry Davy’s laboratory assistant. When Faraday joined Davy in 1812, Davy was in the process of revolutionizing the chemistry of the day. Davy’s ideas were influenced by an atomic theory that was also to have important consequences for Faraday’s thought. This theory, proposed in the 18th century by Ruggero Giuseppe Boscovich, argued that atoms were mathematical points surrounded by alternating fields of attractive and repulsive forces. One property of such atoms is that they can be placed under considerable strain, or tension, before the “bonds” holding them together are broken. These strains were to be central to Faraday’s ideas about electricity.

Faraday’s work under Davy came to an end in 1820. There followed a series of discoveries that astonished the scientific world. Faraday achieved his early renown as a chemist. In 1820 he produced the first known compounds of carbon and chlorine, C2Cl6 and C2Cl4. These compounds were produced by substituting chlorine for hydrogen in “olefiant gas” (ethylene), the first substitution reactions induced. In 1825, as a result of research on illuminating gases, Faraday isolated and described benzene. In the 1820s he also conducted investigations of steel alloys, helping to lay the foundations for scientific metallurgy and metallography. While completing an assignment from the Royal Society of London to improve the quality of optical glass for telescopes, he produced a glass of very high refractive index that was to lead him, in 1845, to the discovery of diamagnetism.

By the 1820s André-Marie Ampère had shown that magnetic force apparently was a circular one, producing in effect a cylinder of magnetism around a wire carrying an electric current. No such circular force had ever before been observed, and Faraday was the first to understand what it implied. If a magnetic pole could be isolated, it ought to move constantly in a circle around a current- carrying wire. Faraday’s ingenuity and laboratory skill enabled him to construct an apparatus that confirmed this conclusion. This device, which transformed electrical energy into mechanical energy, was the first electric motor.

On Aug. 29, 1831, Faraday wound a thick iron ring on one side with insulated wire that was connected to a battery. He then wound the opposite side with wire connected to a galvanometer. What he expected was that a “wave” would be produced when the battery circuit was closed and that the wave would show up as a deflection of the galvanometer in the second circuit. He closed the primary circuit and, to his delight and satisfaction, saw the galvanometer needle jump. A current had been induced in the secondary coil by one in the primary. When he opened the circuit, however, he was astonished to see the galvanometer jump in the opposite direction. Somehow, turning off the current also created an induced current in the secondary circuit, equal and opposite to the original current. This phenomenon led Faraday to propose what he called the “electrotonic” state of particles in the wire, which he considered a state of tension.

In the fall of 1831 Faraday attempted to determine just how an induced current was produced. He discovered that when a permanent magnet was moved in and out of a coil of wire a current was induced in the coil. Magnets, he knew, were surrounded by forces that could be made visible by the simple expedient of sprinkling iron filings on a card held over them. Faraday saw the “lines of force” thus revealed as lines of tension in the medium, namely air, surrounding the magnet, and he soon discovered the law determining the production of electric currents by magnets: the magnitude of the current was dependent upon the number of lines of force cut by the conductor in unit time. He immediately realized that a continuous current could be produced by rotating a copper disk between the poles of a powerful magnet and taking leads off the disk’s rim and centre. This was the first dynamo. It was also the direct ancestor of electric motors, for it was only necessary to reverse the situation, to feed an electric current to the disk, to make it rotate.

Theory of Electrochemistry

In 1832 Faraday began what promised to be a rather tedious attempt to prove that all electricities had precisely the same properties and caused precisely the same effects. The key effect was electrochemical decomposition. Voltaic and electromagnetic electricity posed no prob- lems, but static electricity did. As Faraday delved deeper into the problem, he made two startling discoveries. First, electrical force did not, as had long been supposed, act at a distance upon chemical molecules to cause them to dissociate. It was the passage of electricity through a conducting liquid medium that caused the molecules to dissociate, even when the electricity merely discharged into the air and did not pass into a “pole” or “centre of action” in a voltaic cell. Second, the amount of the decomposition was found to be related in a simple manner to the amount of electricity that passed through the solution.

These findings led Faraday to a new theory of electrochemistry. The electric force, he argued, threw the molecules of a solution into a state of tension (his electrotonic state). When the force was strong enough to distort the fields of forces that held the molecules together so as to permit the interaction of these fields with neighbouring particles, the tension was relieved by the migration of particles along the lines of tension, the different species of atoms migrating in opposite directions. The amount of electricity that passed, then, was clearly related to the chemical affinities of the substances in solution. These experiments led directly to Faraday’s two laws of electrochemistry: (1) The amount of a substance deposited on each electrode of an electrolytic cell is directly proportional to the quantity of electricity passed through the cell. (2) The quantities of different elements deposited by a given amount of electricity are in the ratio of their chemical equivalent weights.

Faraday’s work on electrochemistry provided him with an essential clue for the investigation of static electrical induction. Since the amount of electricity passed through the conducting medium of an electrolytic cell determined the amount of material deposited at the electrodes, why should not the amount of electricity induced in a nonconductor be dependent upon the material out of which it was made? In short, why should not every material have a specific inductive capacity? Every material does, and Faraday was the discoverer of this fact.

By 1839 Faraday was able to bring forth a new and general theory of electrical action. Electricity, whatever it was, caused tensions to be created in matter. When these tensions were rapidly relieved (i.e., when bodies could not take much strain before “snapping” back), then what occurred was a rapid repetition of a cyclical buildup, breakdown, and buildup of tension that, like a wave, was passed along the substance. Such substances were called conductors. In electrochemical processes the rate of buildup and breakdown of the strain was proportional to the chemical affinities of the substances involved, but again the current was not a material flow but a wave pattern of tensions and their relief. Insulators were simply materials whose particles could take an extraordinary amount of strain before they snapped. Electrostatic charge in an isolated insulator was simply a measure of this accumulated strain. Thus, all electrical action was the result of forced strains in bodies.

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。


皇家邮政真死板。 欠资不盖戳。



1D46CDEF-125F-4115-ABDB-5DF2235FC9A1.jpeg (122.68 KB, 下载次数: 17)

1D46CDEF-125F-4115-ABDB-5DF2235FC9A1.jpeg
回复 支持 反对

使用道具 举报

55#
 楼主| 发表于 2022-5-15 00:25 | 只看该作者
Later Life

Since the very beginning of his scientific work, Faraday had believed in what he called the unity of the forces of nature. By this he meant that all the forces of nature were but manifestations of a single universal force and ought, therefore, to be convertible into one another. In 1846 he made public some of his speculations in a lecture titled “Thoughts on Ray Vibrations.” Specifically referring to point atoms and their infinite fields of force, he suggested that the lines of electric and magnetic force associated with these atoms might, in fact, serve as the medium by which light waves were propagated.

In 1845 Faraday tackled the problem of his hypothetical electrotonic state. He passed a beam of plane-polarized light through the optical glass of high refractive index and then turned on an electromagnet so that its lines of force ran parallel to the light ray. The plane of polarization was rotated, indicating a strain in the molecules of the glass. But Faraday again noted an unexpected result. When he changed the direction of the ray of light, the rotation remained in the same direction, a fact that Faraday correctly interpreted as meaning that the strain was not in the molecules of the glass but in the magnetic lines of force. The direction of rotation of the plane of polarization depended solely upon the polarity of the lines of force; the glass served merely to detect the effect.

By 1850 Faraday had evolved a radically new view of space and force. Space was not “nothing,” the mere location of bodies and forces, but a medium capable of supporting the strains of electric and magnetic forces. The energies of the world were not localized in the particles from which these forces arose but rather were to be found in the space surrounding them. Thus was born field theory. As Maxwell later freely admitted, the basic ideas for his mathematical theory of electrical and magnetic fields came from Faraday; his contribution was to mathematize those ideas in the form of his classical field equations.

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。
回复 支持 反对

使用道具 举报

56#
 楼主| 发表于 2022-5-15 06:01 | 只看该作者
本帖最后由 ngsunyu 于 2022-5-15 12:03 编辑

查尔斯·萊尔爵士(英語:Sir Charles Lyell, 1st Baronet,FRS,1797年11月14日-1875年2月22日),英國地質學家、律師,是均變說的重要論述者。他的最有名作品是《地質學原理》(Principles of Geology)。達尔文的演化論便是受到這本書的啟發。(zh.Wikipedia.org/查爾斯·萊爾)

Scottish geologist Sir Charles Lyell was largely responsible for the general acceptance of the view that all features of the Earth’s surface are produced by physical, chemical, and biological processes through long periods of geological time. The concept was called uniformitarianism (initially set forth by James Hutton). Lyell’s achievements laid the foundations for evolutionary biology as well as for an understanding of the Earth’s development. He was knighted in 1848 and made a baronet in 1864.

New Approach to Geology

In the 1820s Lyell was rapidly developing new principles of reasoning in geology and began to plan a book which would stress that there are natural (as opposed to supernatural) explanations for all geologic phenomena, that the ordinary natural processes of today and their products do not differ in kind or magnitude from those of the past, and that the Earth must therefore be very ancient because these everyday processes work so slowly. With the ambitious young geologist Roderick Murchison, he explored districts in France and Italy where proof of his principles could be sought. From northern Italy Lyell went south alone to Sicily. Poor roads and accommodations made travel difficult, but in the region around Mt. Etna he found striking confirmation of his belief in the adequacy of natural causes to explain the features of the Earth and in the great antiquity even of such a recent feature as Etna itself.

The results of this trip, which lasted from May 1828 until February 1829, far exceeded Lyell’s expectations. Returning to London, he set to work immediately on his book, Principles of Geology, the first volume of which was published in July 1830. Lyell finished the second volume of Principles of Geology in December 1831 and the third and final volume in April 1833. His steady work was relieved by occasional social or scientific gatherings and a trip to a volcanic district in Germany.

Scientific Eminence

In 1838 Lyell’s Elements of Geology was published, which described European rocks and fossils from the most recent, Lyell’s specialty, to the oldest then known. Like Principles of Geology, this well-illustrated work was periodically enlarged and updated.

In 1841 Lyell accepted an invitation to lecture and travel for a year in North America, returning again for nine months in 1845–46 and for two short visits in the 1850s. During these travels, Lyell visited nearly every part of the United States east of the Mississippi River and much of eastern Canada, seeing almost all of the important geological “monuments” along the way, including Niagara Falls. Lyell was amazed at the comparative ease of travel, and he often praised the speed and comfort of the new railroads and steamships. Lyell wrote enthusiastic and informative books, in 1845 and 1849, about each of his two long visits to the New World.

In the 1840s Lyell became more widely known outside the scientific community. He studied the prevention of mine disasters with the English physicist Michael Faraday in 1844, served as a commissioner for the Great Exhibition in 1851–52, and in the same year helped to begin educational reform at Oxford University—he had long objected to church domination of British colleges. In the winter of 1854 he travelled to Madeira to study the origin of the island itself and its curious fauna and flora. After exhaustive restudy carried out on muleback in 1858, he proved conclusively that Mt. Etna had been built up by repeated small eruptions rather than by a cataclysmic upheaval as some geologists still insisted.

In 1859 publication of Darwin’s Origin of Species gave new impetus to Lyell’s work. Although Darwin drew heavily on Lyell’s Principles of Geology both for style and content, Lyell had never shared Darwin’s belief in evolution. But reading the Origin of Species triggered studies that culminated in publication of The Geological Evidence of the Antiquity of Man in 1863, in which Lyell tentatively accepted evolution by natural selection. Only during completion of a major revision of the Principles of Geology in 1865 did he fully adopt Darwin’s conclusions, however, adding powerful arguments of his own that won new adherents to Darwin’s theory.  

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。

43A9DCA4-3275-4833-BA2C-2712AB49F61A.jpeg (55.17 KB, 下载次数: 24)

43A9DCA4-3275-4833-BA2C-2712AB49F61A.jpeg
回复 支持 反对

使用道具 举报

57#
 楼主| 发表于 2022-6-26 01:59 | 只看该作者
本帖最后由 ngsunyu 于 2022-7-3 09:33 编辑

让·路易·鲁道夫·阿加西(法語:Jean Louis Rodolphe Agassiz,1807年5月28日~1873年12月14日),19世纪瑞士裔植物学家、动物学家和地质学家,以冰川理论闻名。

1847年,阿加西移民美国,在哈佛大学任教,担任动物学和地质学教授。在这里,他领导劳伦斯科学学校,创建了比较动物学博物馆。阿加西对鱼类学分类法和地质学贡献卓著。(zh.wikipedia.org/路易·阿加西)

Swiss-born U.S. naturalist, geologist, and teacher Louis Agassiz made revolutionary contributions to the study of natural science with landmark work on glacier activity and extinct fishes. He achieved lasting fame through his innovative teaching methods, which altered the character of natural science education in the United States.

Early Career

Agassiz’s interest in ichthyology began with his study of an extensive collection of Brazilian fishes, mostly from the Amazon River, which had been collected in 1819 and 1820 by two eminent naturalists at Munich. The classification of these species was begun by one of the collectors in 1826, and when he died the collection was turned over to Agassiz. The work was completed and published in 1829 as Selecta Genera et Species Piscium. The study of fish forms became henceforth the prominent feature of his research. In 1830 he issued a prospectus of a History of the Fresh Water Fishes of Central Europe, printed in parts from 1839 to 1842.

The year 1832 proved the most significant in Agassiz’s early career because it took him first to Paris, then the centre of scientific research, and later to Neuchâtel, Switz., where he spent many years of fruitful effort. Already Agassiz had become interested in the rich stores of the extinct fishes of Europe, especially those of Glarus in Switzerland and of Monte Bolca near Verona, of which, at that time, only a few had been critically studied. As early as 1829 Agassiz planned a comprehensive and critical study of these fossils and spent much time gathering material wherever possible. His epoch-making work, Recherches sur les poissons fossiles, appeared in parts from 1833 to 1843. In it, the number of named fossil fishes was raised to more than 1,700. The great importance of this fundamental work rests on the impetus it gave to the study of extinct life itself. Turning his attention to other extinct animals found with the fishes, Agassiz published in 1838–42 two volumes on the fossil echinoderms of Switzerland, and later (1841–42) his Études critiques sur les mollusques fossiles.

From 1832 to 1846 Agassiz worked on his Nomenclator Zoologicus, a catalog with references of all the names applied to genera of animals from the beginning of scientific nomenclature, a date since fixed at Jan. 1, 1758. However, in 1836 Agassiz began a new line of studies: the movements and effects of the glaciers of Switzerland. In 1840 he published his Études sur les glaciers, in some respects his most important work. In it, Agassiz showed that at a geologically recent period Switzerland had been covered by one vast ice sheet. His final conclusion was that “great sheets of ice, resembling those now existing in Greenland, once covered all the countries in which unstratified gravel (boulder drift) is found.”

Activities in the United States

In 1846 Agassiz visited the United States for the general purpose of studying natural history and geology there but more specifically to give a course of lectures at the Lowell Institute in Boston. In 1847 he accepted a professorship of zoology at Harvard University. In the United States his chief volumes of scientific research were the following: Lake Superior (1850); Contributions to the Natural History of the United States (1857–62), in four quarto volumes, the most notable being on the embryology of turtles; and the Essay on Classification (1859), a brilliant publication, which, however, failed to grasp the fact that zoology was moving away from the doctrine of special creation toward the doctrine of evolution.

Besides these extensive contributions there appeared a multitude of short papers on natural history and especially on the fishes of the U.S. His two expeditions of most importance were, first, to Brazil in 1865 and, second, to California in 1871, the former trip involving both shores of South America. A Journey in Brazil (1868), written by Mrs. Agassiz and himself, gives an account of their experiences. His most important paper on U.S. fishes dealt with the group of viviparous surf fishes of California.

Agassiz’s method as teacher was to give contact with nature rather than information. He discouraged the use of books except in detailed research. The result of his instruction at Harvard was a complete revolution in the study of natural history in the U.S. The purpose of study was not to acquire a category of facts from others but to be able, through active contact with the natural world, to gather the needed facts. As a result of his activities, every notable teacher of natural history in the U.S. for the second half of the 19th century was a pupil either of Agassiz or of one of his students.

In the interests of better teaching and scientific enthusiasm, he organized in the summer of 1873 the Anderson School of Natural History at Penikese, an island in Buzzards Bay. This school, which had the greatest influ- ence on science teaching in America, was run solely by Agassiz. After his death it vanished.

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。

FEAA6165-0B61-4674-82BF-8CFA18757971.jpeg (73.05 KB, 下载次数: 21)

FEAA6165-0B61-4674-82BF-8CFA18757971.jpeg

F382E5B3-5C2C-4F6A-B3E2-B3D2A9A040FB.jpeg (187.41 KB, 下载次数: 20)

F382E5B3-5C2C-4F6A-B3E2-B3D2A9A040FB.jpeg
回复 支持 反对

使用道具 举报

58#
 楼主| 发表于 2022-7-3 09:15 | 只看该作者
本帖最后由 ngsunyu 于 2022-7-3 09:27 编辑

查尔斯·罗伯特·达尔文 (英語:Charles Robert Darwin,1809年2月12日-1882年4月19日)英国博物學家、地質學家和生物學家,其最著名的研究成果是天擇演化,解釋了適應的來源,並指出他认为所有物種都是从少數共同祖先演化而来的。到了19世纪30年代,达尔文的理論成為對演化機制的主要詮釋,並成為現代演化思想的基礎,在科學上可對生物多樣性進行一致且合理的解釋,是現今生物學的基石。(zh.wikipedia.org/查尔斯·达尔文)

English naturalist Charles Darwin developed the theory of evolution by natural selection, which became the foundation of modern evolutionary studies. An affable country gentleman, Darwin at first shocked religious Victorian society by suggesting that animals and humans shared a common ancestry. However, his nonreligious biology appealed to the rising class of professional scientists, and by the time of his death evolutionary imagery had spread through all of science, literature, and politics. Darwin, himself an agnostic, was accorded the ultimate British accolade of burial in Westminster Abbey, London. Darwin formulated his bold theory in private in 1837–39, after returning from a voyage around the world aboard HMS Beagle, but it was not until two decades later that he finally gave it full public expression in On the Origin of Species (1859), a book that has deeply influenced modern Western society and thought.

The Beagle Voyage

Darwin embarked on the Beagle voyage on Dec. 27, 1831. The circumnavigation of the globe would be the making of Darwin. Five years of physical hardship and mental rigour, imprisoned within a ship’s walls, offset by wide-open opportunities in the Brazilian jungles and the Andes Mountains, were to give Darwin a new seriousness. As a gentleman naturalist, he could leave the ship for extended periods, pursuing his own interests. As a result, he spent only 18 months of the voyage aboard the ship. Among the places Darwin visited on the voyage were the Cape Verde Islands, coastal regions of Brazil, Uruguay, and Argentina, and the Galapagos Islands.

On the last leg of the voyage Darwin finished his 770-page diary, wrapped up 1,750 pages of notes, drew up 12 catalogs of his 5,436 skins, bones, and carcasses—and still he wondered: Was each Galapagos mockingbird a naturally produced variety? Why did ground sloths become extinct? He sailed home with problems enough to last him a lifetime.

Evolution by Natural Selection

Following the voyage, Darwin became well known through his diary’s publication as Journal of Researches into the Geology and Natural History of the Various Countries Visited by H.M.S. Beagle (1839). He also employed the best experts and published their descriptions of his specimens in his Zoology of the Voyage of H.M.S. Beagle (1838–43). Darwin drafted a 35-page sketch of his theory of natural selection in 1842 and expanded it in 1844, but he had no immediate intention of publishing it. In 1842, Darwin, increasingly shunning society, had moved his family to the isolated village of Downe, in Kent, at the “extreme edge of [the] world.” (It was in fact only 16 miles [26 km] from central London.)

From 1846 to 1854, Darwin added to his credibility as an expert on species by pursuing a detailed study of all known barnacles. Intrigued by their sexual differentiation, he discovered that some females had tiny degenerate males clinging to them. This sparked his interest in the evolution of diverging male and female forms from an original hermaphrodite creature. Four monographs on such an obscure group made him a world expert. No longer could he be dismissed as a speculator on biological matters.

On the Origin of Species

In the 1850s the changing social composition of science in England—typified by the rise of the freethinking biologist Thomas Henry Huxley—promised that Darwin’s work would be well-received. Huxley, the philosopher Herbert Spencer, and other outsiders were opting for a secular nature in the rationalist Westminster Review and deriding the influence of “parsondom” (the influence of the church). Darwin had himself lost the last shreds of his belief in Christianity with the tragic death of his oldest daughter, Annie, from typhoid in 1851.

In 1854 Darwin solved his last major problem, the forking of genera to produce new evolutionary branches. He used an industrial analogy familiar from the Wedgwood factories, the division of labour: competition in nature’s overcrowded marketplace would favour variants that could exploit different aspects of a niche. Species would diverge on the spot, like tradesmen in the same tenement.

In 1856 Darwin began writing a triple-volume book, tentatively called Natural Selection. Whereas in the 1830s Darwin had thought that species remained perfectly adapted until the environment changed, he now believed that every new variation was imperfect, and that perpetual struggle was the rule. He also explained the evolution of sterile worker bees in 1857. These could not be selected because they did not breed, so he opted for “family” selection (kin selection, as it is known today): the whole colony benefited from their retention.

Darwin had finished a quarter of a million words by June 18, 1858. That day he received a letter from Alfred Russel Wallace, an English socialist and specimen collector working in the Malay Archipelago, sketching a similar-looking theory. Darwin, fearing loss of priority, accepted a solution proposed by geologist Sir Charles Lyell and botanist Joseph Dalton Hooker: joint extracts from Darwin’s and Wallace’s works would be read at the Linnean Society on July 1, 1858. Darwin was away, sick, grieving for his tiny son who had died from scarlet fever, and thus he missed the first public presentation of the theory of natural selection.

Darwin hastily began an “abstract” of Natural Selection, which grew into a more accessible book, On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Suffering from a terrible bout of nausea, Darwin, now 50, was secreted away at a spa on the desolate Yorkshire moors when the book was sold to the trade on Nov. 22, 1859. He still feared the worst. The book did distress his Cambridge patrons, but they were marginal to science now. However, radical Dissenters were sympathetic, as were the rising London biologists and geologists, even if few actually adopted Darwin’s cost-benefit approach to nature. The newspapers drew the one conclusion that
 Darwin had specifically 
avoided: that humans
 had evolved from apes, 
and that Darwin was
 denying mankind’s  
immortality. A sensitive 
Darwin, making no
personal appearances, 
let Huxley, by now a
 good friend, manage
 this part of the debate.
 The pugnacious Huxley,
who loved public argument as much as 
Darwin loathed it, had
 his own reasons for tak
ing up the cause, and
 did so with enthusiasm.
 He wrote three reviews 
of Origin of Species,
 defended human evolu
tion at the Oxford
 meeting of the British
 Association for the 
Advancement of Science 
in 1860 (when Bishop
 Samuel Wilber force jokingly asked whether the apes were on Huxley’s grandmother’s or grandfather’s side), and published his own book on human evolution, Evidence as to Man’s Place in Nature (1863). What Huxley championed was Darwin’s evolutionary naturalism, his nonmiraculous assumptions, which pushed biological science into previously taboo areas and increased the power of Huxley’s professionals.

Huxley’s reaction, with its enthusiasm for evolution and cooler opinion of natural selection, was typical. Natural selection received little support in Darwin’s day. By contrast, evolution itself (“descent,” Darwin called it— the word evolution would only be introduced in the last, 1872, edition of the Origin) was being acknowledged from British Association platforms by 1866.

E9BD9A3F-6541-41EB-A185-62280A37B0A5.jpeg (121.38 KB, 下载次数: 20)

E9BD9A3F-6541-41EB-A185-62280A37B0A5.jpeg
回复 支持 反对

使用道具 举报

59#
 楼主| 发表于 2022-7-3 09:30 | 只看该作者
本帖最后由 ngsunyu 于 2022-7-3 09:37 编辑

The Patriarch in His Home Laboratory

In the 1860s Down House continued to serve as Darwin’s laboratory, where he experimented and revamped the Origin through six editions. Although quietly believing in natural selection, he answered critics by reemphasizing other causes of change—for example, the effects of continued use of an organ—and he bolstered the Lamarckian belief that such alterations through excessive use might be passed on. In Variation of Animals and Plants under Domestication (1868) he marshaled the facts and explored the causes of variation in domestic breeds.

In 1867 the engineer Fleeming Jenkin argued that any single favourable variation would be swamped and lost by back-breeding within the general population. No mechanism was known for inheritance, and so in the Variation Darwin devised his hypothesis of “pangenesis” to explain the discrete inheritance of traits. He imagined that each tissue of an organism threw out tiny “gemmules,” which passed to the sex organs and permitted copies of themselves to be made in the next generation. But Darwin’s cousin Francis Galton failed to find these gemmules in rabbit blood, and the theory was dismissed.

Darwin was adept at flanking movements in order to get around his critics. He would take seemingly intractable subjects—like orchid flowers—and make them test cases for “natural selection.” Hence the book that appeared after the Origin was, to everyone’s surprise, The Various Contrivances by which British and Foreign Orchids are Fertilised by Insects (1862). He showed that the orchid’s beauty was not a piece of floral whimsy “designed” by God to please humans but honed by selection to attract insect cross-pollinators. The petals guided the bees to the nectaries, and pollen sacs were deposited exactly where they could be removed by a stigma of another flower.

But why the importance of cross-pollination? Darwin’s botanical work was always subtly related to his evolutionary mechanism. He believed that cross-pollinated plants would produce fitter offspring than self-pollinators, and he used considerable ingenuity in conducting thousands of crossings to prove the point. The results appeared in The Effects of Cross and Self Fertilization in the Vegetable Kingdom (1876). His next book, The Different Forms of Flowers on Plants of the Same Species (1877), was again the result of long-standing work into the way evolution in some species favoured different male and female forms of flowers to facilitate outbreeding.

The Private Man and the Public Debate

Through the 1860s natural selection was already being applied to the growth of society.The trend to explain the evolution of human races, morality, and civilization was capped by Darwin in his two-volume The Descent of Man, and Selection in Relation to Sex (1871). The book was authoritative, annotated, and heavily anecdotal in places. The two volumes were discrete, the first discussing civilization and human origins among the Old World monkeys. (Darwin’s depiction of a hairy human ancestor with pointed ears led to a spate of caricatures.) The second volume responded to critics who doubted that the iridescent humming bird’s plumage had any function—or any Darwinian explanation. Darwin argued that female birds were choosing mates for their gaudy plumage. Darwin as usual tapped his huge correspondence network of breeders, naturalists, and travelers worldwide to produce evidence for this. Such “sexual selection” happened among humans too. With primitive societies accepting diverse notions of beauty, aesthetic preferences, he believed, could account for the origin of the human races.

Darwin finished another long-standing line of work. Since studying the moody orangutans at London Zoo in 1838, Darwin had been fascinated by facial expression. As a student he had heard the attacks on the idea that people’s facial muscles were designed by God to express their unique thoughts. Now his photographically illustrated The Expression of the Emotions in Man and Animals (1872) expanded the subject to include the rages and grimaces of asylum inmates, all to show the continuity of emotions and expressions between humans and animals.

The treadmill of experiment and writing gave much meaning to Darwin’s life. But as he wrapped up his final, long-term interest, publishing The Formation of Vegetable Mould, Through the Action of Worms (1881), the future looked bleak. Such an earthy subject was typical Darwin: just as he had shown that today’s ecosystems were built by infinitesimal degrees and the mighty Andes by tiny uplifts, so he ended on the monumental transformation of landscapes by the Earth’s humblest denizens.

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。

这些PHQ不是英国皇家邮政极限明信片,因为它是把邮票放大印为明信片,包括齿孔,皇冠和面值。由于他们的存在,英国很少人用非PHQ片来自制极限明信片。PHQ 不能参加极限邮展,也许作为明信片类别展出。谁有极限明信片?

The 'PHQ' stands for Postal Headquarters. All items published by the Post Office are given a number which is prefixed by letters. The first card issued, on 16 May 1973, was numbered PHQ1, and the numbering sequence has continued to the present day.
There are three main areas of collecting interest. Many collectors like to collect only the unused cards, but some like to obtain them with first day of issue postmarks. Others like to obtain them with special handstamps that have some connection to the stamp subject matter. Also, stamp collectors will usually put the stamp on the back of the card, but a very popular variation is for the stamp to be applied to the face of the card, so that the postcard picture, stamp and postmark are all visible on the same face. (en.wikipedia.org/PHQ card)

03E78B36-6AF7-46D0-90A1-B6BF61754F08.jpeg (142.36 KB, 下载次数: 19)

03E78B36-6AF7-46D0-90A1-B6BF61754F08.jpeg
回复 支持 反对

使用道具 举报

60#
 楼主| 发表于 2022-7-17 01:37 | 只看该作者
本帖最后由 ngsunyu 于 2022-7-17 01:41 编辑

法蘭西斯·高爾頓爵士,FRS(英語:Sir Francis Galton,1822年2月16日-1911年1月17日),英格蘭維多利亞時代的博学家、人類學家、優生學家、熱帶探險家、地理學家、發明家、氣象學家、統計學家、心理學家和遺傳學家,查爾斯·達爾文的表弟。(zh.wikipedia.org/法蘭西斯·高爾頓)

English explorer, anthropologist, and eugenicist Sir Francis Galton was known for his pioneering studies of human intelligence. He was knighted in 1909.

Travels and Exploration

When Galton was a young man, he traveled in southeastern Europe. From Vienna he made his way through Constanza, Constantinople, Smyrna, and Athens, and he brought back from the caves of Adelsberg (present-day Postojina, Slovenia) specimens of a blind amphibian named Proteus—the first to reach England. On his return Galton went to Trinity College, Cambridge, where he was a medical student and where, as a result of overwork, he broke down in his third year. But he recovered quickly on changing his mode of life, as he did from similar attacks later.

After leaving Cambridge without taking a degree, Galton continued his medical studies in London. But before they were completed, his father died, leaving him “a sufficient fortune to make me independent of the medical profession.” Galton was then free to indulge his craving for travel. Leisurely expeditions in 1845–46 up the Nile with friends and into the Holy Land alone were preliminaries to a carefully organized penetration into unexplored parts of southwestern Africa. After consulting the Royal Geographical Society, Galton decided to investigate a possible opening from the south and west to Lake Ngami, which lies north of the Kalahari desert some 550 miles east of Walvis Bay.

The expedition, which included two journeys, one northward, the other eastward, from the same base, proved to be difficult and not without danger. Though the explorers did not reach Lake Ngami, they gained valuable information. As a result, at the age of only 31, Galton was in 1853 elected a fellow of the Royal Geographical Society and, three years later, of the Royal Society. In 1853, too, Galton married. There were no children of the marriage. Galton wrote 9 books and some 200 papers. They deal with many diverse subjects, including the use of fingerprints for personal identification, the correlational calculus (a branch of applied statistics)—in both of which Galton was a pioneer—twins, blood transfusions, criminality, the art of travel in undeveloped countries, and meteorology. Most of Galton’s publications disclose his predilection for quantifying; an early paper, for example, dealt with a statistical test of the efficacy of prayer. Moreover, over a period of 34 years, he concerned himself with improving standards of measurement.

Advocacy of Eugenics

Although he made contributions to many fields of knowledge, eugenics remained Galton’s fundamental interest, and he devoted the latter part of his life chiefly to propagating the idea of improving the physical and mental makeup of the human species by selective parenthood. Galton, a cousin of Charles Darwin, was among the first to recognize the implications for mankind of Darwin’s theory of evolution. He saw that it invalidated much of contemporary theology and that it also opened possibilities for planned human betterment. Galton coined the word eugenics to denote scientific endeavours to increase the proportion of persons with better than average genetic endowment through selective mating of marriage partners. In his Hereditary Genius (1869), in which he used the word genius to denote “an ability that was exceptionally high and at the same time inborn,” his main argument was that mental and physical features are equally inherited—a proposition that was not accepted at the time.

It is surprising that when Darwin first read this book, he wrote to the author: “You have made a convert of an opponent in one sense for I have always maintained that, excepting fools, men did not differ much in intellect, only in zeal and hardwork.”This book doubtless helped Darwin to extend his evolution theory to man. Galton, unmentioned in Origin of Species (1859), is several times quoted in Darwin’s Descent of Man (1871). Galton’s conviction that mental traits are no less inherited than are physical characteristics was strong enough to shape his personal religious philosophy. “We cannot doubt,” he wrote, “the existence of a great power ready to hand and capable of being directed with vast benefit as soon as we have learned to understand and apply it.”

Galton’s Inquiries into Human Faculty (1883) consists of some 40 articles varying in length from 2 to 30 pages, which are mostly based on scientific papers written between 1869 and 1883. The book can in a sense be regarded as a summary of the author’s views on the faculties of man. On all his topics, Galton has something original and interesting to say, and he says it with clarity, brevity, distinction, and modesty. Under the terms of his will, a eugenics chair was established at the University of London.

Reputation

In the 20th century Galton’s name has been mainly associated with eugenics. Insofar as eugenics takes primary account of inborn differences between human beings, it has come under the suspicion of those who hold that cultural (social and educational) factors heavily outweigh inborn, or biological, factors in their contribution to human differences. Eugenics is accordingly often treated as an expression of class prejudice, and Galton as a reactionary. Yet to some extent this view misrepresents his thought, for his aim was not the creation of an aristocratic elite but of a population consisting entirely of superior men and women. His ideas, like those of Darwin, were limited by a lack of an adequate theory of inheritance; the rediscovery of the work of Mendel came too late to affect Galton’s contribution in any significant way.

全文可在 www.arvindguptatoys.com/arvindgupta/hundred-scientists.pdf 下载。

A356C541-8930-4615-A967-BFBDB39060B5.jpeg (46.53 KB, 下载次数: 18)

A356C541-8930-4615-A967-BFBDB39060B5.jpeg

759CF4FF-3081-477C-82F8-B56DD677D38D.jpeg (18.61 KB, 下载次数: 19)

759CF4FF-3081-477C-82F8-B56DD677D38D.jpeg
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

小黑屋|手机版|Archiver|chinamaxicard.com ( 粤ICP备05042178号 )

GMT+8, 2024-4-20 16:50 , Processed in 0.076925 second(s), 15 queries .

Powered by Discuz! X3.2 Licensed

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表